Skip to contents

This function forecasts demand per fare class

Usage

forecast_demand_sim(
  nsim = 100,
  probs1,
  probs2,
  alpha = 200,
  beta = 1,
  a1 = 1,
  b1 = 1,
  a2 = 1,
  b2 = 1,
  phi1 = 0.5,
  n = 3000,
  hor_length = 30
)

Arguments

nsim

Number of simulations Default 100.

probs1

Numeric vector of probability of purchase in each fare class for customer type 1

probs2

Numeric vector of probability of purchase in each fare class for customer type 2

alpha

Shape parameter of gamma distribution for total demand. Default 200.

beta

Rate parameter of gamma distribution for total demand. Default 1.

a1

Beta distribution parameter 1 for customer type 1. Default 1.

b1

Beta distribution parameter 2 for customer type 1. Default 1.

a2

Beta distribution parameter 1 for customer type 2. Default 1.

b2

Beta distribution parameter 2 for customer type 2. Default 1.

phi1

Percentage of total demand for customer type 1. Default 0.5.

n

Total number of time points that will be generated. Default 3000.

hor_length

Number of points that make up the booking horizon, Default 30.

Value

A numeric value.