Skip to contents

Make a data frame messier.

Usage

messy(data, messiness = 0.1, missing = NA, case_type = "word")

Arguments

data

input dataframe

messiness

Percentage of values to change per function. Must be between 0 and 1. Default 0.1.

missing

A single value, vector, or list of what the missing values will be replaced with. If length is greater than 1, values will be replaced randomly. Default NA.

case_type

Whether the case should change based on the "word" or "letter".

Value

a dataframe the same size as the input data.

Examples

messy(mtcars)
#>                       mpg  cyl   disp   hp  drat     wt   qsec   vs   am gear
#> Mazda RX4            <NA>    6    160  110   3.9   2.62  16.46    0    1    4
#> Mazda RX4 Wag          21    6    160  110   3.9  2.875  17.02   0     1    4
#> Datsun 710           22.8    4    108   93 3.85   2.32   18.61    1    1    4
#> Hornet 4 Drive       21.4    6    258  110 3.08   3.215  19.44    1    0    3
#> Hornet Sportabout    18.7    8   360  175   3.15   3.44   <NA>    0    0    3
#> Valiant              18.1    6    225  105  2.76   3.46 20.22     1    0 <NA>
#> Duster 360           <NA>    8    360  245  3.21   3.57  15.84    0 <NA>    3
#> Merc 240D            24.4    4  146.7   62  3.69   3.19     20    1    0    4
#> Merc 230             22.8    4  140.8   95  3.92   3.15   22.9    1    0    4
#> Merc 280             19.2    6 167.6   123  3.92   3.44   18.3    1    0 <NA>
#> Merc 280C           17.8     6  167.6 <NA>  3.92   3.44   18.9    1    0   4 
#> Merc 450SE           <NA>    8  275.8  180  3.07   <NA>   17.4    0 <NA>    3
#> Merc 450SL          17.3     8  275.8 <NA>  3.07   3.73  17.6     0    0    3
#> Merc 450SLC          15.2    8  275.8  180  3.07   3.78     18 <NA>    0    3
#> Cadillac Fleetwood   10.4    8    472  205  2.93   5.25   <NA> <NA>    0 <NA>
#> Lincoln Continental  <NA>   8     460  215     3  5.424  17.82    0 <NA>    3
#> Chrysler Imperial    14.7   8    <NA>  230  3.23  5.345  17.42 <NA>    0    3
#> Fiat 128             32.4    4   78.7 <NA> 4.08     2.2  19.47 <NA>    1    4
#> Honda Civic          30.4 <NA>   <NA>   52  4.93  1.615  18.52 <NA>    1    4
#> Toyota Corolla       33.9    4   <NA>   65  4.22  1.835   19.9    1    1    4
#> Toyota Corona        21.5    4  120.1   97   3.7  2.465 20.01     1 <NA>    3
#> Dodge Challenger     15.5    8    318 <NA> 2.76    3.52  16.87    0    0    3
#> AMC Javelin          <NA>    8    304  150  3.15  3.435   17.3    0    0 <NA>
#> Camaro Z28           13.3    8   350  245   3.73   3.84  15.41    0    0    3
#> Pontiac Firebird    19.2     8    400  175  3.08  3.845  17.05    0    0    3
#> Fiat X1-9            27.3   4      79   66  4.08 1.935   18.9     1    1    4
#> Porsche 914-2          26   4    <NA> <NA>  4.43   2.14   <NA>    0    1    5
#> Lotus Europa         30.4    4   95.1  113  3.77 1.513    16.9    1    1    5
#> Ford Pantera L       15.8    8    351 264   4.22  3.17    14.5    0    1 <NA>
#> Ferrari Dino         <NA>    6   145   175  <NA>   2.77   <NA>    0    1    5
#> Maserati Bora          15    8    301 <NA>  3.54   3.57   14.6    0    1    5
#> Volvo 142E          21.4     4    121  109  4.11   2.78   18.6    1    1    4
#>                     carb
#> Mazda RX4              4
#> Mazda RX4 Wag          4
#> Datsun 710             1
#> Hornet 4 Drive         1
#> Hornet Sportabout      2
#> Valiant                1
#> Duster 360             4
#> Merc 240D              2
#> Merc 230               2
#> Merc 280               4
#> Merc 280C              4
#> Merc 450SE             3
#> Merc 450SL             3
#> Merc 450SLC            3
#> Cadillac Fleetwood     4
#> Lincoln Continental    4
#> Chrysler Imperial   <NA>
#> Fiat 128               1
#> Honda Civic         <NA>
#> Toyota Corolla         1
#> Toyota Corona          1
#> Dodge Challenger    <NA>
#> AMC Javelin            2
#> Camaro Z28             4
#> Pontiac Firebird       2
#> Fiat X1-9              1
#> Porsche 914-2          2
#> Lotus Europa           2
#> Ford Pantera L         4
#> Ferrari Dino           6
#> Maserati Bora       <NA>
#> Volvo 142E             2