Skip to contents

Randomly make values missing in all data columns, or a subset of columns

Usage

make_missing(data, cols = NULL, messiness = 0.1, missing = NA)

Arguments

data

input dataframe

cols

set of columns to apply transformation to. If NULL will apply to all columns. Default NULL.

messiness

Percentage of values to change. Must be between 0 and 1. Default 0.1.

missing

A single value, vector, or list of what the missing values will be replaced with. If length is greater than 1, values will be replaced randomly. Default NA.

Value

a dataframe the same size as the input data.

Examples

make_missing(mtcars)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag         NA   6 160.0  NA 3.90 2.875 17.02  0  1   NA    4
#> Datsun 710          22.8   4 108.0  93   NA 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6    NA 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8    NA 175 3.15 3.440    NA  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570    NA  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00 NA  0    4    2
#> Merc 230            22.8   4    NA  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123   NA 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123   NA 3.440 18.90  1 NA    4    4
#> Merc 450SE            NA   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8    NA 180 3.07    NA 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3   NA
#> Cadillac Fleetwood  10.4   8 472.0  NA 2.93 5.250 17.98  0  0    3   NA
#> Lincoln Continental 10.4  NA 460.0 215   NA 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4   NA
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4   NA
#> Toyota Corona         NA   4 120.1  97 3.70 2.465 20.01 NA  0   NA    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2  NA 304.0 150   NA 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8    NA 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43    NA 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L        NA   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino          NA   6 145.0 175   NA 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4    NA 109 4.11 2.780 18.60 NA  1    4    2