Skip to contents

Duplicate columns and insert them into the dataframe at random

Usage

duplicate_columns(data, messiness = 0.1, random = TRUE, name_sep = "")

Arguments

data

input dataframe

messiness

Probability that each column is duplicated. Must be between 0 and 1. Default 0.1.

random

Whether duplicated column names should be randomly selected from other column names, or maintain the original. Default TRUE.

name_sep

Separator to use for adding numbers to end of names. Default "".

Value

A dataframe with duplicated rows inserted

Author

Jordi Rosell

Examples

duplicate_columns(mtcars, messiness = 0.1)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb wt453
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4 2.620
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4 2.875
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1 2.320
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1 3.215
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 3.440
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1 3.460
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4 3.570
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2 3.190
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2 3.150
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4 3.440
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4 3.440
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3 4.070
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3 3.730
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3 3.780
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4 5.250
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4 5.424
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4 5.345
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1 2.200
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2 1.615
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1 1.835
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1 2.465
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2 3.520
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2 3.435
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4 3.840
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2 3.845
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1 1.935
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2 2.140
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2 1.513
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4 3.170
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6 2.770
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8 3.570
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2 2.780