Detecting outlier demand in revenue management networks

3rd IMA & OR Society Conference

Nicola Rennie • Lancaster University

- Controls ticket availability.
- Combines forecasting with optimisation.
- Decision support for RM analysts is needed.

- Over 1000 stations.
- Over 110,000 possible O-Ds.
- Bookings are reported on the leg-level.

Figure: Railway network with two legs

 Outliers don't affect entire network, nor single leg.

 Partition network using clustering.

Figure: Railway network with two legs

- Nodes represent stations.
- Edges represent legs connecting stations.

Figure: Railway network graph

- Nodes represent legs.
- Edges define which legs can be in same cluster.

Figure: Inverted graph

 The common traffic ratio of legs AB and BC is:

$$r(AB, BC) = \frac{D_{AC}}{D_{AB} + D_{BC} + D_{AC}}.$$

Figure: Railway network with two legs

• Add in common traffic ratio to edges

Figure: Inverted graph with common traffic ratios

- Edge weights are 1 r()
- Obtain minimum spanning tree (Prim's algorithm)

Figure: Minimum spanning tree with edge weights

• Remove edges with weight above some threshold.

Figure: Clusters obtained in inverted graph

Figure: Leg AB

Figure: Leg BC

Figure: Leg CD

Figure: Leg DE

 Depth measures provide an ordering of the data

 Functional depth quantifies how central a trajectory is

- Define a threshold for the functional depth on each leg
- Departures with depth below threshold are outliers

 Define z_{nl} to be the normalised difference between the functional depth and the threshold:

$$z_{nl}=\frac{C_l-d_{nl}}{C_l}.$$

 Next we define the sums of threshold exceedances across legs:

$$z_n = \sum_{l=1}^L z_{nl} \mathbb{1}_{\{z_{nl}>0\}}.$$

- We want to measure outlier severity.
- Fit a distribution to the threshold exceedances.

Define θ_n to be the non-exceedance probability from the GPD. The non-exceedance probability is given by the CDF:

$$heta_n = F_{(\mu,\sigma,\xi)}(z_n) = egin{cases} 1 - \left(1 + rac{\xi(z_n - \mu)}{\sigma}\right)^{-rac{1}{\xi}} & \xi
eq 0 \ 1 - exp\left(-rac{(z_n - \mu)}{\sigma}\right) & \xi = 0 \end{cases}$$

Construct an alert list to send to analysts:

Ranking	Departure	Probability	Legs Detected In
1	11/05/2019	0.985	AB, BC, CD, DE
2	26/10/2019	0.960	AB, BC, CD, DE
3	09/06/2019	0.942	AB, BC, CD, DE
4	01/06/2019	0.874	AB, BC, CD, DE
5	13/07/2019	0.865	AB, BC, CD, DE
	- 9	1 1 1	

Table: Ranked alert list for cluster = $\{AB, BC, CD, DE\}$

Figure: Leg AB

Figure: Leg BC

Figure: Leg CD

Figure: Leg DE

- Of the 40 outliers detected, 23 could be attributed to known events or holidays.
- When considering only the top 10 outliers, this rose to 70%.
- One of the detected outliers had been previously flagged.

Does it work?

 Use simulation to evaluate detection and ranking of outliers

- Larger outliers are ranked higher
- Ranking of medium outliers depends on sizes of other outliers

 True positive rate: fraction of genuine outliers which have been detected.

• **Precision**: fraction of departures classified as outliers that are genuine outliers.

Conclusions:

- Functional depth correctly identifies and ranks outliers for analysts
- Aggregating information across similar legs improves performance

- N. Rennie, C. Cleophas, A.M. Sykulski et al. Identifying and responding to outlier demand in revenue management. European Journal of Operational Research. 2021.
- N. Rennie, C. Cleophas, A.M. Sykulski et al. Detecting outlying demand in multi-leg bookings for transportation networks. arXiv. 2021.

n.rennie@lancaster.ac.uk • @nrennie35