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Detecting outlier demand in
revenue management networks
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® Controls ticket
availability.

® Combines forecasting
with optimisation.

® Decision support for
RM analysts is needed.
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® Qver 1000 stations.

e Over 110,000 possible
O-Ds.

® Bookings are reported
on the leg-level.

Figure: Railway network with two
legs
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e Qutliers don't affect
entire network, nor
single leg.

Figure: Railway network with two
legs

® Partition network using
clustering.



® Nodes represent
stations.

® Ldges represent legs
connecting stations.

Figure: Railway network graph




® Nodes represent legs.

® Edges define which legs
can be in same cluster.
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® The common traffic
ratio of legs AB and
BC is:

Figure: Railway network with two
D
r(AB, BC) = =

legs

Dag + Dgc + Dac’
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e Add in common traffic
ratio to edges

Figure: Inverted graph with
common traffic ratios




® Edge weights are
1—r()

e Obtain minimum
spanning tree (Prim’s
algorithm)

Figure: Minimum spanning tree
with edge weights




® Remove edges with
weight above some

threshold.

Figure: Clusters obtained in

¥ . n inverted graph
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Leg AB Leg BC Leg CD Leg DE
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Figure: Leg BC Figure: Leg CD Figure: Leg DE




® Depth measures
provide an ordering of
the data
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Bookings

® Functional depth
quantifies how central
a trajectory is
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® Define a threshold for
the functional depth on
each leg

Functiogal depth
193
=

® Departures with depth
below threshold are

outliers A

Jan 2019 Jul 2019

Departure Date
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® Define z, to be the
normalised difference
between the functional
depth and the
threshold:

Threshold exceedances

Jan 2019 Jul 2019

i . " Departure Date
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® Next we define the
sums of threshold
exceedances across
legs:

Sum of Threshold Exceedances

L
Zy =), an]l{zn/>0}- 4
/=4 Jan 2019 Jul 2019

Departure Date
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® |Ne want to measure
outlier severity.

e fjt a distribution to the
threshold exceedances.

0 1 2 3 4
. Threshold exceedances, z,
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Define 0, to be the non-exceedance probability from
the GPD. The non-exceedance probability is given by
the CDF:

1—(1+ﬂz"0—“)2% =
1—exp(—(z";“> ¢ =4

On = Fluoe)(2n) = {
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Construct an alert list to send to analysts:

Ranking  Departure  Probability Legs Detected In
11/05/2019 0.985 AB, BC, CD, DE
26/10/2019 0.960 AB, BC, CD, DE
09/06/2019 0.942 AB, BC, CD, DE
01,/06,/2019 0.874 AB, BC, CD, DE
13/07/2019 0.865 AB, BC, CD, DE

T OaON WN N

Ranked alert list for cluster = {AB, BC, CD, DE}
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Figure: Leg AB Figure: Leg BC Figure: Leg CD Figure: Leg DE
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o Of the 40 outliers detected, 23 could be attributed
to known events or holidays.

® When considering only the top 10 outliers, this
rose to 70%.

® One of the detected outliers had been previously
flagged.
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< f \ [ Large [ Small

[0 Medium [] Regular

Does it work?

e (Use simulation to
evaluate detection and
ranking of outliers

25 50 75

' . " Ranking of Alert List
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[0 Medium [] Regular

® [arger outliers are
ranked higher

® Ranking of medium
outliers depends on
sizes of other outliers

25 50 75

' . " Ranking of Alert List
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100 = Aggregated
= Leg AB

~ Leg BC
= LegCD
= LegDE

® True positive rate:
fraction of genuine
outliers which have
been detected.

10 100
Maximum Length of Alert List
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® Precision: fraction of
departures classified as
outliers that are
genuine outliers.

10 100
Maximum Length of Alert List
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Conclusions:

® functional depth correctly identifies and ranks
outliers for analysts

® Aggregating information across similar legs
improves performance
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