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Supporting decision making in RM

» RM systems often allow analysts to make adjustments to forecasts.

» However, judgemental forecasts can be biased and even
superfluous (De Baets, S. and Harvey, N., 2020).

» Decision support for analysts is needed to reduce complexity.
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Railway network RM

» Bookings are reported on the

leg-level.
Leg AB Leg BC

» Outliers don’t affect entire

i A B e
network, nor single leg.

> Partition network using Figure: Railway network with two legs

clustering.
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Clustering railway legs
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connecting stations. ¢) E
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Figure: Railway network graph
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Clustering railway legs

AB
N
FB —— BC
» Nodes represent legs. \ \CD
—
BC L
» Edges define which legs can \ DE
be in same cluster. G
I
GH

Figure: Inverted graph
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Clustering railway legs

» The common traffic ratio of

legs AB and BC is: Leg AB Leg BC

B Dyc
r(AB,BC) = Diap + Dpc + Dac’

Figure: Railway network with two legs
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Clustering railway legs

AB
Q.07
FB BC
Q.05
» Edge weights are 1 — r() 0.68\  0.77/ cp
BC T Q11
» Obtain minimum spanning 017\ L
tree (Prim’s algorithm) CG
0.08 |
GH

Figure: Minimum spanning tree with
edge weights
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Clustering railway legs

AB

AN

FB BC

AN
CD
» Remove edges with weight 3 N
above some threshold. \ DE

CG
|

GH

Figure: Clusters obtained in inverted
graph
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Detecting outliers within clusters

Leg AB Leg BC Leg CD Leg DE
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Detecting outliers within clusters

Leg AB Leg BC Leg CD Leg DE

@ > B & C A D >

[

Figure: Leg AB Figure: Leg BC Figure: Leg CD Figure: Leg DE
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Detecting outliers within clusters

» Univariate depth: provides an
ordering of the data

High
depth

Density
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Detecting outliers within clusters

» Univariate depth: provides an » Functional depth: measure of
ordering of the data how central a trajectory is.
High

depth

Density
Bookings
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Detecting outliers within clusters

1.00

0.75
» Define a threshold for the

functional depth on each leg.

» Departures with depth below
threshold are outliers.

Functional depth
S
W
S

0.25

0.00
Jan 2019 Jul 2019

Departure Date
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Detecting outliers within clusters

» Define z,, to be the
normalised difference

between the functional depth
and the threshold:

Threshold exceedances

C,—d
2y = lCl nl‘

Jan 2019 Jul 2019

Departure Date
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Detecting outliers within clusters

W

» Next we define the sums of
threshold exceedances across
legs:

(S}

—_

Sum of Threshold Exceedances

L
in = Zan]l{z,,l>0}-
=1

0 e

Jan 2019 Jul 2019

Departure Date
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Detecting outliers within clusters

» We want to measure outlier
severity.

Density

> Fit a generalised Pareto
distribution (GPD) to the
threshold exceedances.

0 1 2 3 4

Threshold exceedances, z,
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Detecting outliers within clusters

Define 6,, to be the non-exceedance probability from the GPD. The
non-exceedance probability is given by the CDF:

1
(14 fmm) ) E
enzF(‘u’U,é)(Zn):{l (1+ = ) é::#O
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Detecting outliers within clusters

Construct an alert list to send to analysts:

Ranking Departure Severity Legs Detected In
1 11/05/2019 0.985 AB, BC, CD, DE
2 26/10/2019 0.960 AB, BC, CD, DE
3 09/06/2019 0.942 AB, BC, CD, DE
4 01/06/2019 0.874 AB, BC, CD, DE
5 13/07/2019  0.865 AB, BC, CD, DE

Table: Ranked alert list for cluster = {AB, BC, CD, DE}
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Detecting outliers within clusters

Figure: Leg AB Figure: Leg BC Figure: Leg CD Figure: Leg DE
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Detecting outliers within clusters

» Of the 40 outliers detected, 23 (58%) could be attributed to
known events or holidays.

» When considering only the top 10 outliers, this rose to 70%.

» One of the detected outliers had been previously flagged.
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Simulation study results

[ Large [ Small

q q Medi Regul
» Use simulation to evaluate D Medium L] Regular

detection and ranking of 0.08
outliers.
0.06
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0.02
0.00
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Ranking of Alert List
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Simulation study results

[ Large [ Small

q q Medi Regul
» Use simulation to evaluate D Medium L] Regular

detection and ranking of 0.08
outliers.
» Larger outliers are ranked 0.06
higher.
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Simulation study results

[ Large [ Small

q q Medi Regul
» Use simulation to evaluate D Medium L] Regular

detection and ranking of 0.08
outliers.
» Larger outliers are ranked 0.06
higher.
0.04

» Ranking of medium outliers
depends on sizes of other

) 0.02
outliers.

0.00
25 50 75 100

Ranking of Alert List
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Simulation study results

» True positive rate: fraction » A Precision: fraction of
of genuine outliers which detected outliers that are
have been detected. genuine outliers.

100 = Aggregated
- Leg
= LegBC
= LegCD
= Leg DE

True Positive Rate
o
g

Change in Precision

025

10 100
Maximum Length of Alert List

10 100
Maximum Length of Alert List
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Conclusion

» Functional depth correctly identifies and ranks outliers for
analysts.

P> Aggregating information across similar legs improves
performance.
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