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Revenue management

m Commonly used by transport
service providers to control ticket
availability.

m Combines forecasting with
optimisation.

m Decision support for RM analysts is
needed.
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Network revenue management: Deutsche Bahn

m Focus on long-distance trains.

m Over 1000 stations. Leg AB Leg BC

m Over 110,000 possible A B E

origin-destinations (0-D). _ ‘ _
Figure: Railway network with two legs

m Bookings are reported on the
leg-level, not O-D.
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Clustering: Graphical representation
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(a) Railway network graph
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Clustering: Graphical representation
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(a) Railway network graph
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Clustering: Leg similarity

The common traffic ratio of legs AB and
BC is:

Dac
r(AB, BC) =
(AB, C) Dag + Dgc + Dac’
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Clustering: Leg similarity

The common traffic ratio of legs AB and Leg AB Leg BC
BCis:
A B o
Dac
r(AB,BC) =
(4B, BC) Dag + Dpc + Dac’ Figure: Railway network with two legs

m If r(AB,BC) = 1, then the number of bookings on leg AB and leg BC are
identical, and the correlation between them is 1.

m Conversely, if r(AB, BC) = 0, then the bookings on leg AB and leg BC are
independent with correlation 0.

m Estimate r(AB, BC) with correlation.
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Clustering: Minimum spanning tree clustering

(a) Inverted graph with common traffic ratio
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Clustering: Minimum spanning tree clustering

(a) Inverted graph with common traffic ratio  (b) Minimum spanning tree with edge weights
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Clustering: Minimum spanning tree clustering
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(a) Clusters obtained in inverted
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Clustering: Minimum spanning tree clustering
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(a) Clusters obtained in inverted
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(b) Translation of clusters to original graph
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Deutsche Bahn network

Clustering
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Deutsche Bahn network

Clustering

joyuyeqiso ulueg

49H ulieg

eUOY-Sinquiey

2 |

| &

TSEEmo 8in EmI_

e
_ nepueds ulusg _

y |

=
on
()

_zm._sg&_o\s_

y |

[39H Binquiey |
o

% on
(7]
=

_m_m\ssum::mhm _

_m‘:ﬁhm: Sinquiey _

v |

=)
% on
(7]
=

[3qH J3nouueH |

T3

@mn&:ﬂ
™~

o)
@
L
=
o)

10

Nicola Rennie

Detecting outlier demand in railway networks



Detecting outliers

Leg AB Leg BC Leg CD Leg DE

@ O ®
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Detecting outliers

Leg AB Leg BC Leg CD Leg DE

©

Figure: Leg AB Figure: Leg BC Figure: Leg CD Figure: Leg DE
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Detecting outliers: Functional depth

15

m Calculate the functional depth of
the booking pattern for each train,
separately for each leg.

1.0
m Depth measures provide an 5 poes, T3 . e,
ordering of observations. 3 e o |
m Functional depth tells us how S ey .-“-r..."-'.- e e
different the magnitude and shape IR AL
is from the average booking Il
pattern.
0.0
Jan 2019 Apr 2019 Jul 2019 Oct 2019

Departure Date
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Detecting outliers: Threshold exceedances

Define z,, to be the normalised
difference between the functional depth
and the threshold:
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Detecting outliers: Aggregation across legs

Next we define the sums of threshold
; exceedances across legs:

L
Zp = E Zn(liz, >0}
=1

N

Sum of Threshold Exceedances

1

H X‘,MTL HM Hl hﬂ.

Jan 2019 Apr 2019 Jul 2019 Oct 2019
Departure Date
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Detecting outliers: Aggregation across legs

Next we define the sums of threshold
; exceedances across legs:

L
Zp = E Zn(liz, >0}
=1

N

Sum of Threshold Exceedances

m Outlier in more legs = Larger z,

1

H X‘,MTL HM Hl hﬂ.

Jan 2019 Apr 2019 Jul 2019 Oct 2019
Departure Date

m Larger outlier = Larger z,
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Detecting outliers: Fitting a distribution

15

m Fit a generalised Pareto distribution
(GPD) to the aggregated threshold 10
exceedances.

05

00 1‘—\ [
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Detecting outliers: Outlier probabilities

Define 6, to be the non-exceedance probability from the GPD. The
non-exceedance probability is given by the CDF:

1—(1+5(Z"‘“))% €40
1—exp( (zn— ’”) £=0

On = F(uoe)(2n) = {
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Detecting outliers: Constructing a ranked alert list

Ranking Departure

Probability Legs Detected In

1

U PN

11/05/2019
26/10/2019
09/06/2019
01/06/2019
13/07/2019

0.985
0.960
0.942
0.874
0.865

AB, BC, CD, DE
AB, BC, CD, DE
AB, BC, CD, DE
AB, BC, CD, DE
AB, BC, CD, DE

Table: Ranked alert list for cluster = {AB, BC, CD, DE}

Detecting outlier demand in railway networks

Nicola Rennie

17



Results: Deutsche Bahn

(a) Leg AB (b) Leg BC (c) LegCD (d) LegD

m Of the 40 outliers detected, 23 could be attributed to known events or
holidays.

m When considering only the top 10 outliers, this rose to 70%.

m One of the detected outliers had been previously flagged.
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Results: Simulation

m True positive rate: fraction of
genuine outliers which have been
detected,
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Results: Simulation

m True positive rate: fraction of
genuine outliers which have been
detected,
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Results: Simulation

m Precision: fraction of trains
classified as outliers that are
genuine outliers.
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Results: Simulation

m Precision: fraction of trains
classified as outliers that are
genuine outliers.
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Results: Simulation

0.100 [] Large (50-60%) [] Medium (30—40%) [] Small (10—20%) [_] Regular

0.075

0.050

0.025

0.000

o 25 50 75 100
Ranking of Alert List
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