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Supporting decision making in RM

▶ RM systems often allow analysts to make adjustments to forecasts.

▶ However, judgemental forecasts can be biased and even
superfluous (De Baets, S. and Harvey, N., 2020).

▶ Decision support for analysts is needed to reduce complexity.
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Railway network RM

▶ Bookings are reported on the
leg-level.

▶ Outliers don’t affect entire
network, nor single leg.

▶ Partition network using
clustering.
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Figure: Railway network with two legs
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Clustering railway legs

▶ Nodes represent stations.
▶ Edges represent legs

connecting stations.
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Figure: Railway network graph
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Clustering railway legs

▶ Nodes represent legs.
▶ Edges define which legs can

be in same cluster.
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Figure: Inverted graph
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Clustering railway legs

▶ The common traffic ratio of
legs AB and BC is:

𝑟(𝐴𝐵, 𝐵𝐶) = 𝐷𝐴𝐶
𝐷𝐴𝐵 + 𝐷𝐵𝐶 + 𝐷𝐴𝐶

.
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Figure: Railway network with two legs
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Clustering railway legs

▶ Edge weights are 1 − 𝑟()

▶ Obtain minimum spanning
tree (Prim’s algorithm)
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Figure: Minimum spanning tree with
edge weights
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Clustering railway legs

▶ Remove edges with weight
above some threshold.
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Figure: Clusters obtained in inverted
graph
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Clustering Deutsche Bahn network
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Detecting outliers within clusters
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Figure: Leg AB
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Figure: Leg DE
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Detecting outliers within clusters
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Figure: Leg AB
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Figure: Leg DE
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Detecting outliers within clusters
▶ Univariate depth: provides an

ordering of the data
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▶ Functional depth: measure of
how central a trajectory is.
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Detecting outliers within clusters

▶ Define a threshold for the
functional depth on each leg.

▶ Departures with depth below
threshold are outliers.
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Detecting outliers within clusters

▶ Define 𝑧𝑛𝑙 to be the
normalised difference
between the functional depth
and the threshold:

𝑧𝑛𝑙 = 𝐶𝑙 − 𝑑𝑛𝑙
𝐶𝑙

.
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Detecting outliers within clusters

▶ Next we define the sums of
threshold exceedances across
legs:

𝑧𝑛 =
𝐿

∑
𝑙=1

𝑧𝑛𝑙1{𝑧𝑛𝑙>0}.
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Detecting outliers within clusters

▶ We want to measure outlier
severity.

▶ Fit a generalised Pareto
distribution (GPD) to the
threshold exceedances.
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Detecting outliers within clusters

Define 𝜃𝑛 to be the non-exceedance probability from the GPD. The
non-exceedance probability is given by the CDF:

𝜃𝑛 = 𝐹(𝜇,𝜎,𝜉)(𝑧𝑛) =
⎧{
⎨{⎩
1 − (1 + 𝜉(𝑧𝑛−𝜇)

𝜎 )
− 1

𝜉 𝜉 ≠ 0
1 − 𝑒𝑥𝑝 (− (𝑧𝑛−𝜇)

𝜎 ) 𝜉 = 0
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Detecting outliers within clusters

Construct an alert list to send to analysts:
Ranking Departure Severity Legs Detected In

1 11/05/2019 0.985 AB, BC, CD, DE
2 26/10/2019 0.960 AB, BC, CD, DE
3 09/06/2019 0.942 AB, BC, CD, DE
4 01/06/2019 0.874 AB, BC, CD, DE
5 13/07/2019 0.865 AB, BC, CD, DE
⋮ ⋮ ⋮ ⋮

Table: Ranked alert list for cluster = {𝐴𝐵, 𝐵𝐶, 𝐶𝐷, 𝐷𝐸}
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Detecting outliers within clusters
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Figure: Leg AB
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Figure: Leg BC
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Figure: Leg CD
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Figure: Leg DE
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Detecting outliers within clusters

▶ Of the 40 outliers detected, 23 (58%) could be attributed to
known events or holidays.

▶ When considering only the top 10 outliers, this rose to 70%.
▶ One of the detected outliers had been previously flagged.
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Simulation study results

▶ Use simulation to evaluate
detection and ranking of
outliers.

▶ Larger outliers are ranked
higher.

▶ Ranking of medium outliers
depends on sizes of other
outliers.
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Simulation study results

▶ Use simulation to evaluate
detection and ranking of
outliers.

▶ Larger outliers are ranked
higher.
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Simulation study results
▶ True positive rate: fraction

of genuine outliers which
have been detected.
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▶ Δ Precision: fraction of
detected outliers that are
genuine outliers.
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Conclusion

▶ Functional depth correctly identifies and ranks outliers for
analysts.

▶ Aggregating information across similar legs improves
performance.
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