Data Driven Alerts in Airline Revenue Management The Identification of Inaccurate Demand Estimates

Nicola Rennie¹

Supervisors: Catherine Cleophas^{1,2}, Florian Dost³, Adam Sykulski¹

¹ Lancaster University, ² Christian-Albrechts-Universität zu Kiel, ³ University of Manchester

24th June 2019

Motivation

- Relates to making demand-management decisions, with the objective being to increase revenue.
- Combines forecasting with optimisation.
- Three types of revenue management decisions:
 - Structural decisions
 - Price decisions
 - Quantity decisions

- Relates to making demand-management decisions, with the objective being to increase revenue.
- Combines forecasting with optimisation.
- Three types of revenue management decisions:
 - Structural decisions
 - Price decisions
 - Quantity decisions

Relates to making demand-management decisions, with the objective being to increase revenue.

Combines forecasting with optimisation.

Three types of revenue management decisions:

- Structural decisions
- Price decisions
- Quantity decisions

Relates to making demand-management decisions, with the objective being to increase revenue.

Combines forecasting with optimisation.

- Three types of revenue management decisions:
 - Structural decisions
 - Price decisions
 - Quantity decisions

- Relates to making demand-management decisions, with the objective being to increase revenue.
- Combines forecasting with optimisation.
- Three types of revenue management decisions:
 - Structural decisions
 - Price decisions
 - Quantity decisions

Relates to making demand-management decisions, with the objective being to increase revenue.

Combines forecasting with optimisation.

- Three types of revenue management decisions:
 - Structural decisions
 - Price decisions
 - Quantity decisions

Airline Revenue Management System

Figure: The Theory and Practice of Revenue Management, Talluri & van Ryzin, 2004

Airline Revenue Management System

Figure: The Theory and Practice of Revenue Management, Talluri & van Ryzin, 2004

Airline Revenue Management System

Figure: The Theory and Practice of Revenue Management, Talluri & van Ryzin, 2004

Weatherford and Belobaba (2002)

In terms of loss of potential revenue, 'the greatest impacts were observed when the fare class demand forecasts proved to be inaccurate.'

Mukhopadhyay et al (2007)

If analysts can reliably improve system-generated forecasts on critical flights at critical times, airlines can generate significantly more revenue.

Cleophas et al (2017)

- 'Systematically measuring the effect of such interventions and on improving their support is still rare'.
- Aim to improve analyst interventions by identifying critical flights, through incorporating outlier detection methodology from statistics literature into revenue management techniques.

Weatherford and Belobaba (2002)

In terms of loss of potential revenue, 'the greatest impacts were observed when the fare class demand forecasts proved to be inaccurate.'

Mukhopadhyay et al (2007)

 'If analysts can reliably improve system-generated forecasts on critical flights at critical times, airlines can generate significantly more revenue.'

Cleophas et al (2017)

- 'Systematically measuring the effect of such interventions and on improving their support is still rare'.
- Aim to improve analyst interventions by identifying critical flights, through incorporating outlier detection methodology from statistics literature into revenue management techniques.

Weatherford and Belobaba (2002)

- In terms of loss of potential revenue, 'the greatest impacts were observed when the fare class demand forecasts proved to be inaccurate.'
- Mukhopadhyay et al (2007)
 - 'If analysts can reliably improve system-generated forecasts on critical flights at critical times, airlines can generate significantly more revenue.'
- Cleophas et al (2017)
 - 'Systematically measuring the effect of such interventions and on improving their support is still rare'.
- Aim to improve analyst interventions by identifying critical flights, through incorporating outlier detection methodology from statistics literature into revenue management techniques.

Weatherford and Belobaba (2002)

- In terms of loss of potential revenue, 'the greatest impacts were observed when the fare class demand forecasts proved to be inaccurate.'
- Mukhopadhyay et al (2007)
 - 'If analysts can reliably improve system-generated forecasts on critical flights at critical times, airlines can generate significantly more revenue.'
- Cleophas et al (2017)
 - 'Systematically measuring the effect of such interventions and on improving their support is still rare'.
- Aim to improve analyst interventions by identifying critical flights, through incorporating outlier detection methodology from statistics literature into revenue management techniques.

Motivation: Impact on Potential Revenue

	% Change in Demand from Forecast			
Demand Factor	-25%	-12.5%	+12.5%	+25%
0.90	-13.6%	-7.7%	+10.0%	+13.8%
1.20	-11.3%	-3.4%	+1.4%	+2.8%
1.50	+2.1%	-0.7%	+7.7%	+18.0%
Avg.	-7.6%	-3.9%	+6.4%	+11.5%

Table: % Change in Revenue from Identifying Inaccurate Demand Forecasts Under EMSR-b Controls

In line with previous findings by Weatherford and Belobaba (2002).

- Impacts of unexpected demand are not symmetric.
- Under EMSR-b heuristic booking limits, optimistic forecasting can be beneficial.
- Potential impact of detecting outliers depends on the optimisation routine used to set booking limits.

Motivation: Impact on Potential Revenue

	% Change in Demand from Forecast			
Demand Factor	-25%	-12.5%	+12.5%	+25%
0.90	-13.6%	-7.7%	+10.0%	+13.8%
1.20	-11.3%	-3.4%	+1.4%	+2.8%
1.50	+2.1%	-0.7%	+7.7%	+18.0%
Avg.	-7.6%	-3.9%	+6.4%	+11.5%

Table: % Change in Revenue from Identifying Inaccurate Demand Forecasts Under EMSR-b Controls

- In line with previous findings by Weatherford and Belobaba (2002).
 - Impacts of unexpected demand are not symmetric.
 - Under EMSR-b heuristic booking limits, optimistic forecasting can be beneficial.
- Potential impact of detecting outliers depends on the optimisation routine used to set booking limits.

Simulation

Simulation: Customer Arrivals

- Two customer types: business and tourist, as per Weatherford et al (1993).
- Business customers arrive later in the booking horizon than tourists.
- Business customers typically have higher willingness-to-pay, and are less price sensitive.

Simulation: Customer Arrivals

Customer Arrivals

Each customer type arrives according to a Poisson-Gamma process with rate $\lambda_i(t)$:

$$\lambda_i(t) = A\phi_i \frac{t^{a_i - 1}(1 - t)^{b_i - 1}}{B(a_i, b_i)}$$

and chooses to purchase a seat in fare class j with probability p_{ij} , where:

$$\blacksquare \ \frac{a_1 - 1}{a_1 + b_1 - 2} > \frac{a_2 - 1}{a_2 + b_2 - 2}$$

Figure: Arrival Rates for Business and Tourist Passenger

Simulation: Customer Arrivals

Figure: Fare Class Demand from all Passengers

Fare Class	ĥ	$\hat{\sigma}^2$
А	46.2	25.3
0	24.2	18.8
J	28.6	25.5
Р	22.9	26.6
R	18.5	16.5
S	16.9	11.2
М	69.8	28.2

 Table: Mean and Variance Forecasts

 $\alpha = 240, \beta = 1, \phi_1 = \phi_2 = 0.5, a_1 = 5, b_1 = 2, a_2 = 2, b_2 = 5$

Maximise revenue by limiting the number of low value tickets sold.

- Allocate capacity to each fare class.
- Expected Marginal Seat Revenue-b booking limit for fare class *j* is given by:

$$\mathsf{PL}_{j}=\mathsf{F}_{j}^{-1}\left(1-\frac{\mathsf{r}_{j+1}}{\tilde{\mathsf{r}}_{j}}\right),$$

- *F_j*, (Gaussian) distribution of demand for fare class *j*,
- **r**_j, fare in fare class j,
- if \vec{r}_j , weighted-average revenue from classes 1, ..., *j*.

Fare Class		BL
А	46.2	43
	24.2	23
	28.6	29
Р	22.9	24
R	18.5	19
	16.9	17
M	69.8	45

- Maximise revenue by limiting the number of low value tickets sold.
- Allocate capacity to each fare class.
- Expected Marginal Seat Revenue-b booking limit for fare class *j* is given by:

$$\mathsf{PL}_{j}=\mathsf{F}_{j}^{-1}\left(1-\frac{\mathsf{r}_{j+1}}{\tilde{\mathsf{r}}_{j}}\right),$$

- *F_j*, (Gaussian) distribution of demand for fare class *j*,
- **r**_j, fare in fare class j,
- if \vec{r}_j , weighted-average revenue from classes 1, ..., *j*.

Fare Class		BL
А	46.2	43
	24.2	23
	28.6	29
Р	22.9	24
R	18.5	19
	16.9	17
M	69.8	45

- Maximise revenue by limiting the number of low value tickets sold.
- Allocate capacity to each fare class.
- Expected Marginal Seat Revenue-b booking limit for fare class *j* is given by:

$$PL_j = F_j^{-1}\left(1 - \frac{r_{j+1}}{\tilde{r}_j}\right),$$

- *F_j*, (Gaussian) distribution of demand for fare class *j*,
- **r**_j, fare in fare class j,
- *r̃_j*, weighted-average revenue from classes 1, . . . , *j*.

Fare Class		BL
А	46.2	43
	24.2	23
	28.6	29
Р	22.9	24
R	18.5	19
	16.9	17
M	69.8	45

- Maximise revenue by limiting the number of low value tickets sold.
- Allocate capacity to each fare class.
- Expected Marginal Seat Revenue-b booking limit for fare class *j* is given by:

$$PL_j = F_j^{-1} \left(1 - \frac{r_{j+1}}{\tilde{r}_j} \right),$$

- *F_j*, (Gaussian) distribution of demand for fare class *j*,
- **r**_j, fare in fare class j,
- *r̃_j*, weighted-average revenue from classes 1, . . . , *j*.

Fare Class	$\hat{\mu}$	BL
А	46.2	43
0	24.2	23
J	28.6	29
Р	22.9	24
R	18.5	19
S	16.9	17
М	69.8	45

Simulation: Booking Data

Figure: Simulated Booking Data (Aggregated by Departure Date)

Simulation: Generating Unexpected Demand

Simulation: Generating Unexpected Demand

Focus on outliers generated by an increase or decrease in overall demand.

Consider four types of outliers:

- $\blacksquare~\pm$ 12.5%, \pm 25% change in demand from forecast.
- e.g. 25% increase in demand: generate 475 (normal) flights which have expected demand 240, and generate 25 (outlier) flights which have expected demand 300.
- Aim to detect those 25 outlier flights as early in the booking horizon as possible.

Simulation: Generating Unexpected Demand

- Focus on outliers generated by an increase or decrease in overall demand.
- Consider four types of outliers:
 - $\blacksquare~\pm$ 12.5%, \pm 25% change in demand from forecast.
 - e.g. 25% increase in demand: generate 475 (normal) flights which have expected demand 240, and generate 25 (outlier) flights which have expected demand 300.
 - Aim to detect those 25 outlier flights as early in the booking horizon as possible.

Methodology

Outlier Detection

Univariate outlier detection

- Applied at each time point independently.
- Ignores time dependence within and between booking curves.

Multivariate outlier detection

- Treats each booking curve at time *t*, as a point in *t*-dimensional space.
- Ignores time dependence within and between booking curves.
- Issues with high-dimensionality.

Functional outlier detection

- Treat booking curves as observations of a real function.
- Define an outlier as a curve generated by a stochastic process with a different distribution than the rest of the curves, which are assumed to be identically distributed.

Outlier Detection

Univariate outlier detection

- Applied at each time point independently.
- Ignores time dependence within and between booking curves.

Multivariate outlier detection

- Treats each booking curve at time *t*, as a point in *t*-dimensional space.
- Ignores time dependence within and between booking curves.
- Issues with high-dimensionality.

Functional outlier detection

- Treat booking curves as observations of a real function.
- Define an outlier as a curve generated by a stochastic process with a different distribution than the rest of the curves, which are assumed to be identically distributed.

Outlier Detection

Univariate outlier detection

- Applied at each time point independently.
- Ignores time dependence within and between booking curves.

Multivariate outlier detection

- Treats each booking curve at time *t*, as a point in *t*-dimensional space.
- Ignores time dependence within and between booking curves.
- Issues with high-dimensionality.

Functional outlier detection

- Treat booking curves as observations of a real function.
- Define an outlier as a curve generated by a stochastic process with a different distribution than the rest of the curves, which are assumed to be identically distributed.

Univariate Outlier Detection

- Percentile Bootstrapping
 - At each time point, calculate an lower and upper limit for the number of bookings which are classified as normal.
 - Bootstrap number of bookings at each time point, and find 2.5th, and 97.5th percentile of each bootstrap sample. Take median across bootstrap samples as lower/upper limit.

Tolerance Intervals

 $\label{eq:constraint} Herein the parameters: the constraints proportion, <math>\beta$, and confidence level, $[1-\infty,\infty]$ is a for $X_1, X_2, \infty, [X_n]$ is nonlocal sample from a population with their button $\{r[X], if n \in [X_n]\}$

then the interval (L, U) is called a (eta,1-lpha) two-sided tolerance interval.

Robust Z-Score

Let y(I) be the cumulative number of bookings for flight (at time). The robust 2-accesses are not bookings for flight (at time).

 $2_i = \frac{0.8745(y_i(0) - \bar{y}(0))}{MAD(0)},$

where $\mathcal{P}(t)$ is the median member of bookings of time Lecross utilitients. Photos with a robust Z-score above 3.5 are classified as radiums, (plantca and Hoartin (1983).

Univariate Outlier Detection

Percentile Bootstrapping

- At each time point, calculate an lower and upper limit for the number of bookings which are classified as normal.
- Bootstrap number of bookings at each time point, and find 2.5th, and 97.5th percentile of each bootstrap sample. Take median across bootstrap samples as lower/upper limit.

Tolerance Intervals

- Nonparametric or parametric approaches.
- **E** Require two parameters: the coverage proportion, β , and confidence level, 1α .
- For X_1, X_2, \ldots, X_n , a random sample from a population with distribution F(X), if:

$$\mathbb{P}\left(F(U) - F(L) > \beta\right) = 1 - \alpha,\tag{1}$$

then the interval (L, U) is called a (β , 1 – α) two-sided tolerance interval.

Robust Z-Score

Univariate Outlier Detection

Percentile Bootstrapping

- At each time point, calculate an lower and upper limit for the number of bookings which are classified as normal.
- Bootstrap number of bookings at each time point, and find 2.5th, and 97.5th percentile of each bootstrap sample. Take median across bootstrap samples as lower/upper limit.

Tolerance Intervals

- Nonparametric or parametric approaches.
- Require two parameters: the coverage proportion, β , and confidence level, 1α .
- For X_1, X_2, \ldots, X_n , a random sample from a population with distribution F(X), if:

$$\mathbb{P}\left(F(U) - F(L) > \beta\right) = 1 - \alpha,\tag{1}$$

then the interval (L, U) is called a $(\beta, 1 - \alpha)$ two-sided tolerance interval.

Robust Z-Score

• Let $y_i(t)$ be the cumulative number of bookings for flight *i* at time *t*. The robust Z-score can be calculated as:

$$\tilde{Z}_{i} = \frac{0.6745 (y_{i}(t) - \tilde{y}(t))}{MAD(t)},$$
(2)

where $\tilde{y}(t)$ is the median number of bookings at time *t* across all flights. Flights with a robust Z-score above 3.5 are classified as outliers, (Iglewicz and Hoaglin (1993)).

Univariate Outlier Detection: Results

Univariate Outlier Detection: Results

Matthew's Correlation Coefficient

$$\textit{TP} imes \textit{TN} - \textit{FP} imes \textit{FN}$$

$$\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}$$

MCC lies between ± 1 :

- 1 = perfect classification
- 0 = equivalent to random classification
- -1 = perfectly incorrect classification

Univariate Outlier Detection: Results

- Easier to detect outliers which have a large magnitude increase/decrease in demand.
- Easier to detect decreases in demand, as opposed to increases.
- Drop in ability to detect outliers shortly before departure, due to demand censoring from booking controls.

Multivariate Outlier Detection

Distance Metrics

For each booking curve, calculate the mean (Euclidean or Manhattan) distance between it and booking curves for all other flights.

.

The distance between two vectors $\mathbf{x} = (x_1, x_2, \dots, x_N)$ and $\mathbf{y} = (y_1, y_2, \dots, y_N)$ is given by:

• Euclidean:
$$D(\mathbf{x}, \mathbf{y}) = \left(\sum_{n=1}^{N} (x_n - y_n)^2\right)^{\frac{1}{2}}$$

• Manhattan:
$$D(x, y) = \sum_{n=1}^{N} |(x_n - y_n)|$$

K-Means Clustering

- Split the booking curves into groups (clusters).
- Iteratively minimise (Euclidean or Manhattan) distance between observations and cluster centres.
- Those curves with a distance from their cluster centre above some threshold, are classified as outliers.

Multivariate Outlier Detection

Distance Metrics

- For each booking curve, calculate the mean (Euclidean or Manhattan) distance between it and booking curves for all other flights.
- The distance between two vectors $\vec{x} = (x_1, x_2, \dots, x_N)$ and $y = (y_1, y_2, \dots, y_N)$ is given by:

```
Exclictant: D(x, y) = \left(\sum_{i=1}^{N} (x_i - y_i)^2\right)^{\frac{1}{2}}

Management D(x, y) = \sum_{i=1}^{N} (x_i - y_i)^2
```

- K-Means Clustering
 - Split the booking curves into groups (clusters).
 - Iteratively minimise (Euclidean or Manhattan) distance between observations and cluster centres.
 - Those curves with a distance from their cluster centre above some threshold, are classified as outliers.

Multivariate Outlier Detection: Results

Multivariate Outlier Detection: Results

- Easier to detect outliers which have a large magnitude increase/decrease in demand.
- Easier to detect decreases in demand, as opposed to increases.
- Less of a drop in performance later in the booking horizon, as more previous information is used.

Multivariate Outlier Detection: Results

- Easier to detect outliers which have a large magnitude increase/decrease in demand.
- Easier to detect decreases in demand, as opposed to increases.
- Less of a drop in performance later in the booking horizon, as more previous information is used.

Functional Outlier Detection

Functional Depth

 A measure of the centrality, or 'outlyingness' of an observation with respect to a given dataset (López-Pintado and Romo (2009)).

For $\{x_i(t_j); i = 1, ..., n; j = 1, ..., m\}$, define the sample Fraiman-Muniz depth as:

$$SFMD_n(x_i) = \sum_{i=2}^{m} \Delta_j \left(1 - \left| \frac{1}{2} - F_{n,t_j}(x_i(t_j)) \right| \right) ., \ i = 1, ..., n$$

Those curves with depths below some threshold are classified as outliers.

Functional Outlier Detection: Results

Functional Outlier Detection: Results

- Easier to detect outliers which have a large magnitude increase/decrease in demand.
- Difference between ability to detect positive and negative outliers is smaller.
- Unusual spikes in outlier detection performance.

Functional Outlier Detection: Results

- Easier to detect outliers which have a large magnitude increase/decrease in demand.
- Difference between ability to detect positive and negative outliers is smaller.
- Unusual spikes in outlier detection performance.

Comparison of Methods

Comparison of Methods

- Multivariate (clustering) approaches appear to perform best.
- Disadvantages include issues with high-dimensionality as number of DCPs increases, and specifying number of clusters in advance.
- Functional approaches have more scope for extension.

Comparison of Methods

- Multivariate (clustering) approaches appear to perform best.
- Disadvantages include issues with high-dimensionality as number of DCPs increases, and specifying number of clusters in advance.
- Functional approaches have more scope for extension.

- Although the impact of outlier detection depends on the optimisation method, identifying situations where demand is not as expected is beneficial.
- Multivariate and functional approaches are more promising than univariate approaches to outlier detection.
- Demand censoring from booking controls creates issues in outlier detection.
- Outlier detection can be beneficial in identifying critical flights.

- Although the impact of outlier detection depends on the optimisation method, identifying situations where demand is not as expected is beneficial.
- Multivariate and functional approaches are more promising than univariate approaches to outlier detection.
- Demand censoring from booking controls creates issues in outlier detection.
- Outlier detection can be beneficial in identifying critical flights.

- Although the impact of outlier detection depends on the optimisation method, identifying situations where demand is not as expected is beneficial.
- Multivariate and functional approaches are more promising than univariate approaches to outlier detection.
- Demand censoring from booking controls creates issues in outlier detection.
- Outlier detection can be beneficial in identifying critical flights.

- Although the impact of outlier detection depends on the optimisation method, identifying situations where demand is not as expected is beneficial.
- Multivariate and functional approaches are more promising than univariate approaches to outlier detection.
- Demand censoring from booking controls creates issues in outlier detection.
- Outlier detection can be beneficial in identifying critical flights.

- Extend the functional outlier detection approaches to incorporate forecasts, to improve difficulties with censoring.
- Take into account time dependence between curves, and include seasonality.
- Extend to a multivariate setting to jointly monitor booking curves and revenue curves.
- Investigate the impact of unexpected demand in the dynamic pricing setting.

- Extend the functional outlier detection approaches to incorporate forecasts, to improve difficulties with censoring.
- Take into account time dependence between curves, and include seasonality.
- Extend to a multivariate setting to jointly monitor booking curves and revenue curves.
- Investigate the impact of unexpected demand in the dynamic pricing setting.

- Extend the functional outlier detection approaches to incorporate forecasts, to improve difficulties with censoring.
- Take into account time dependence between curves, and include seasonality.
- Extend to a multivariate setting to jointly monitor booking curves and revenue curves.
- Investigate the impact of unexpected demand in the dynamic pricing setting.

- Extend the functional outlier detection approaches to incorporate forecasts, to improve difficulties with censoring.
- Take into account time dependence between curves, and include seasonality.
- Extend to a multivariate setting to jointly monitor booking curves and revenue curves.
- Investigate the impact of unexpected demand in the dynamic pricing setting.

References

- L. R. Weatherford, S. E. Bodily, and P. E. Pfeifer. Modeling the Customer Arrival Process and Comparing Decision Rules in Perishable Asset Revenue Management Situations. Transportation Science, 27(3):239–251, 1993.
- L. R. Weatherford and P. P. Belobaba. Revenue impacts of fare input and demand forecast accuracy in airline yield management. The Journal of the Operational Research Society, 53(8):811–821, 2002.
- K. T. Talluri and G. J. Van Ryzin. *The Theory and Practice of Revenue Management*. Kluwer Academic Publishers, 2004.
- S. Mukhopadhyay, S. Samaddar, and C. Colville. Improving Revenue Management Decision Making for Airlines by Evaluating Analyst-Adjusted Passenger Demand Forecasts. Decision Sciences, 38(2):309–327, 2007.
- C. Cleophas, D. Kadatz, and S. Vock. *Resilient Revenue Management: A Literature Survey of Recent Theoretical Advances*. Journal of Revenue and Pricing Management, 16(5): 483–498, 2017.

Questions?

n.rennie@lancaster.ac.uk