Motivation	Outlier Detection	Simulation	Results	Conclusions
	Concidering outlier	dataction to iden	tify oxtroording	r. (

Considering outlier detection to identify extraordinary demand events for quantity-based revenue management

Nicola Rennie¹

Supervisors: Catherine Cleophas^{1,2}, Adam Sykulski¹, Florian Dost^{1,3}

¹ Lancaster University, ² Christian-Albrechts-Universität zu Kiel, ³ University of Manchester

28th August 2019

Erasmus

Motivation Outlier Detection Simulation Results Conclusions

Motivation	Outlier Detection	Simulation	Results	Conclusions

Motivation

Motivation: Extraordinary Demand Events in Revenue Management

Forecasting is a key component of most RM systems.

- e.g. **passenger demand**, willingness-to-pay, cancellation rates.
- Outliers in demand result in inaccurate forecasts, leading to non-optimal inventory controls, and hence, lost revenue.
- There are two dangers of not detecting outliers:
 - The inability to predict the future in the short-term.
 - Contamination of the data from which forecasts derive in the mid-term.
- Online detection rates are important. If an outlier detection approach only works in hindsight, or close to departure, we can gain little from it.

Motivation: Extraordinary Demand Events in Revenue Management

	Over-forecasting		Under-forecasting	
	% Change in Demand from Forecast			
Forecast Demand Factor	-25% -12.5% +12.5% +25%			+25%
0.90	-2.6%	-2.0%	+3.5%	+2.2%
1.20	+2.7%	+5.4%	-2.3%	-2.2%
1.50	+10.4%	+2.8%	-7.1%	-7.2%
Avg.	+3.5%	+2.1%	-2.0%	-2.4%

Table: % Change in Revenue Resulting from Correcting Inaccurate Demand Forecasts Under EMSRb

- Impacts of unexpected demand are not symmetric.
- Under EMSRb heuristic booking limits, pessimistic forecasting can be beneficial which is in line with previous findings by Weatherford and Belobaba (2002).

Motivation: Extraordinary Demand Events in Revenue Management

	Over-forecasting		Under-forecasting	
	% Change in Demand from Forecast			
Forecast Demand Factor	-25% -12.5% +12.5% +25%			+25%
0.90	-2.6%	-2.0%	+3.5%	+2.2%
1.20	+2.7%	+5.4%	-2.3%	-2.2%
1.50	+10.4%	+2.8%	-7.1%	-7.2%
Avg.	+3.5%	+2.1%	-2.0%	-2.4%

Table: % Change in Revenue Resulting from Correcting Inaccurate Demand Forecasts Under EMSRb

- Impacts of unexpected demand are not symmetric.
- Under EMSRb heuristic booking limits, pessimistic forecasting can be beneficial which is in line with previous findings by Weatherford and Belobaba (2002).

Motivation: Existing Literature

Weatherford and Belobaba (2002)

- In terms of loss of potential revenue, 'the greatest impacts were observed when the fare class demand forecasts proved to be inaccurate.'
- Weatherford and Pölt (2002)
 - Most existing research focuses on accurately forecasting demand, and the 'better unconstraining of airline demand data in revenue management systems for ... greater revenues'.
- Mukhopadhyay et al (2007)
 - If analysts can reliably improve system-generated forecasts on critical flights at critical times, airlines can generate significantly more revenue.

Cleophas et al (2017)

- 'Systematically measuring the effect of such interventions and on improving their support is still rare'.
- Aim to improve analyst interventions by identifying critical flights, through incorporating outlier detection methodology from statistics literature into revenue management techniques.

- Weatherford and Belobaba (2002)
 - In terms of loss of potential revenue, 'the greatest impacts were observed when the fare class demand forecasts proved to be inaccurate.'
- Weatherford and Pölt (2002)
 - Most existing research focuses on accurately forecasting demand, and the 'better unconstraining of airline demand data in revenue management systems for ... greater revenues'.
- Mukhopadhyay et al (2007)
 - If analysts can reliably improve system-generated forecasts on critical flights at critical times, airlines can generate significantly more revenue.
- Cleophas et al (2017)
 - 'Systematically measuring the effect of such interventions and on improving their support is still rare'.
- Aim to improve analyst interventions by identifying critical flights, through incorporating outlier detection methodology from statistics literature into revenue management techniques.

- Weatherford and Belobaba (2002)
 - In terms of loss of potential revenue, 'the greatest impacts were observed when the fare class demand forecasts proved to be inaccurate.'
- Weatherford and Pölt (2002)
 - Most existing research focuses on accurately forecasting demand, and the 'better unconstraining of airline demand data in revenue management systems for ... greater revenues'.
- Mukhopadhyay et al (2007)
 - 'If analysts can reliably improve system-generated forecasts on critical flights at critical times, airlines can generate significantly more revenue.'
- Cleophas et al (2017)
 - 'Systematically measuring the effect of such interventions and on improving their support is still rare'.
- Aim to improve analyst interventions by identifying critical flights, through incorporating outlier detection methodology from statistics literature into revenue management techniques.

- Weatherford and Belobaba (2002)
 - In terms of loss of potential revenue, 'the greatest impacts were observed when the fare class demand forecasts proved to be inaccurate.'
- Weatherford and Pölt (2002)
 - Most existing research focuses on accurately forecasting demand, and the 'better unconstraining of airline demand data in revenue management systems for ... greater revenues'.
- Mukhopadhyay et al (2007)
 - 'If analysts can reliably improve system-generated forecasts on critical flights at critical times, airlines can generate significantly more revenue.'
- Cleophas et al (2017)
 - 'Systematically measuring the effect of such interventions and on improving their support is still rare'.
- Aim to improve analyst interventions by identifying critical flights, through incorporating outlier detection methodology from statistics literature into revenue management techniques.

- Weatherford and Belobaba (2002)
 - In terms of loss of potential revenue, 'the greatest impacts were observed when the fare class demand forecasts proved to be inaccurate.'
- Weatherford and Pölt (2002)
 - Most existing research focuses on accurately forecasting demand, and the 'better unconstraining of airline demand data in revenue management systems for ... greater revenues'.
- Mukhopadhyay et al (2007)
 - 'If analysts can reliably improve system-generated forecasts on critical flights at critical times, airlines can generate significantly more revenue.'
- Cleophas et al (2017)
 - 'Systematically measuring the effect of such interventions and on improving their support is still rare'.
- Aim to improve analyst interventions by identifying critical flights, through incorporating outlier detection methodology from statistics literature into revenue management techniques.

Motivation: What Do We Want to Do?

- Examine the use of existing outlier detection methods for the identification of unusual demand, and highlight specific features of their use in the revenue management setting.
- Propose an adaptation to an existing functional outlier detection method which significantly improves performance.

To our knowledge this is the first suggestion of an automated methodology for outlier detection in a revenue management system.

Motivation	Outlier Detection	Simulation	Results	Conclusions

Outlier Detection

Motivation	Outlier Detection	Simulation	Results	Conclusions
Outlier Det	tection			

Outlier

Outlier: 'an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism.' - Hawkins, 1980

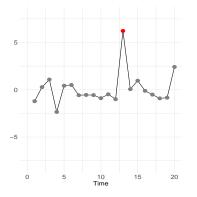


Figure: Outlier Within Time Series

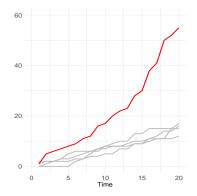
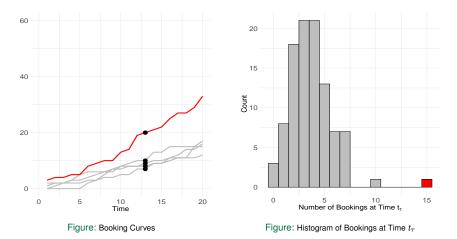


Figure: Time Series as an Outlier

Motivation	Outlier Detection	Simulation	Results	Conclusions
Outlier Det	tection: Univariate A	pproaches		

- Applied at each time point in independently.
- Ignores dependence between and within booking curves.
- Methods: Nonparametric percentiles, tolerance intervals, and robust Z-score.



Motivation	Outlier Detection	Simulation	Results	Conclusions
Outlier De	tection: Multivariate	Approaches		
■ Ign boc ■ Me	blied to a vector of bookings bres dependence between b king curves. thods: Distance-based (k-ne	booking curves, and t	·	

(k-means).

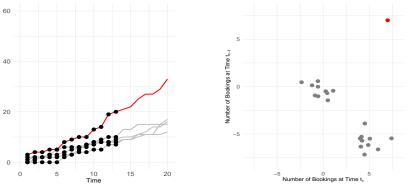


Figure: Booking Curves

Figure: τ -Dimensional Plot of Bookings at Time t_{τ}

Outlier Detection: Functional Approaches

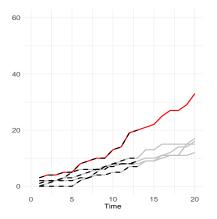


Figure: Booking Curves (2-dimensional)

Functional Data Analysis

- Treat each booking curve as observations of a real function.
- Febrero et al. (2008) define an outlier as a curve generated by a stochastic process with a different distribution than the rest of the curves, which are assumed to be identically distributed.
- Takes into account dependence within booking curves, specifically time dependence.

Functional Depth

- Functional depth is a measure of the centrality, or 'outlyingness' of an observation with respect to a given dataset (López-Pintado and Romo (2009)).
- In the case of one-dimensional random variables, the **halfspace depth** of a point y_n with respect to a sample y_1, \ldots, y_N drawn from distribution F is:

$$HD(y_n) = \min \{F_N(y_n), 1 - F_N(y_n)\}$$

where F_N is the empirical cumulative distribution of the sample y_1, \ldots, y_N .

- This definition has been extended into the multivariate functional data setting.
- We detect outliers by calculating the multivariate functional halfspace depth of each booking curve up to time t_τ. Those curves with depths below some threshold are classified as outliers.

Idea: Combine univariate time series forecasting methods to extrapolate beyond the observed data, then apply function depth outlier detection to the combined observed and extrapolated curve.

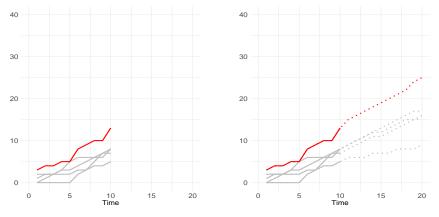


Figure: Booking Curves Until Time t_{τ}

Figure: Booking Curves With Extrapolation

Algorithm 1: Using Extrapolation to Improve Functional Outlier Detection

- 1 At time t_{τ} forecast the accumulation of bookings at each time $\tau + 1, ..., T$, $\hat{y}_n(t_{\tau+1}), ..., \hat{y}_n(t_T)$, for each flight *n*;
- 2 Calculate $\mathcal{D}_n(\hat{\mathbf{y}}_n(t_{\tau}))$, the functional depth of the observed and extrapolated booking curve $\hat{\mathbf{y}}_n(t_{\tau}) = (y_n(t_1), y_n(t_2), \dots, y_n(t_{\tau}), \hat{y}_n(t_{\tau+1}), \dots, \hat{y}_n(t_{\tau}))$, for each flight *n* at time t_{τ} .
- 3 Calculate a threshold, C, for the functional depth.;
- 4 if $\mathcal{D}_n(\hat{\boldsymbol{y}}_n(t_{\tau})) \leq C$ then
- 5 Define flight *n* as an outlier. Delete flight *n* from the sample of *N* flights.
- 6 end
- 7 while $\exists n \text{ s.t. } \mathcal{D}_n(\hat{y}_n(t_\tau)) \leq C \text{ do}$
- 8 Recalculate functional depths on the new sample, and remove further outliers.
- 9 end

Why do we need to generate new forecasts for extrapolation?

- Not all revenue management systems require forecasts of how demand accumulates, only final demand.
- Not all RM systems store historic forecasts.
- Forecasts are based on multiple flights which normalises outlying behaviour.

- Why do we need to generate new forecasts for extrapolation?
 - Not all revenue management systems require forecasts of how demand accumulates, only final demand.
 - Not all RM systems store historic forecasts.
 - Forecasts are based on multiple flights which normalises outlying behaviour.

Simple Exponential Smoothing (SES): SES works on the principle of averaging whilst down-weighting older observations. Given a time series $y_n(t_1), y_n(t_2), \ldots, y_n(t_{\tau})$, a forecast for time $t_{\tau+1}, \hat{y}_n(t_{\tau+1})$ is given by:

$$\hat{y}_n(t_{\tau+1}) = \alpha y_n(t_{\tau}) + (1-\alpha)\hat{y}_n(t_{\tau}),$$

for some smoothing constant, α .

• Autoregressive Integrated Moving Average (ARIMA): ARIMA models incorporate a trend component, and assume that future observations are an additive, weighted combination of previous observations and previous errors. Let $x_n(t_{\tau})$ be the d^{th} differenced time series relating to $y_n(t_{\tau})$. The one-step ahead forecast $\hat{x}_n(t_{\tau+1})$ is given by:

$$\hat{x}_n(t_{\tau+1}) = \mu + \phi_1 x_n(t_{\tau}) + \ldots + \phi_p x_n(t_{\tau-p+1}) - \theta_1 \epsilon(t_{\tau}) - \ldots - \theta_q \epsilon(t_{\tau-q+1})$$

for some constant mean μ , parameters $\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$ and white noise process (ϵ_{l_i}) .

Simple Exponential Smoothing (SES): SES works on the principle of averaging whilst down-weighting older observations. Given a time series $y_n(t_1), y_n(t_2), \ldots, y_n(t_{\tau})$, a forecast for time $t_{\tau+1}, \hat{y}_n(t_{\tau+1})$ is given by:

$$\hat{y}_n(t_{\tau+1}) = \alpha y_n(t_{\tau}) + (1-\alpha)\hat{y}_n(t_{\tau}),$$

for some smoothing constant, α .

• Autoregressive Integrated Moving Average (ARIMA): ARIMA models incorporate a trend component, and assume that future observations are an additive, weighted combination of previous observations and previous errors. Let $\mathbf{x}_n(t_{\tau})$ be the d^{th} differenced time series relating to $\mathbf{y}_n(t_{\tau})$. The one-step ahead forecast $\hat{x}_n(t_{\tau+1})$ is given by:

$$\hat{x}_n(t_{\tau+1}) = \mu + \phi_1 x_n(t_{\tau}) + \ldots + \phi_p x_n(t_{\tau-p+1}) - \theta_1 \epsilon(t_{\tau}) - \ldots - \theta_q \epsilon(t_{\tau-q+1})$$

for some constant mean μ , parameters $\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$ and white noise process (ϵ_{t_j}) .

■ Integrated Generalised Autoregressive Conditional Heteroskedasticity (IGARCH): IGARCH models incorporate a trend component and assume that the variance structure follows an autoregressive moving average model. Again, let $x_n(t_\tau)$ be the d^{th} differenced time series relating to $y_n(t_\tau)$. IGARCH(1,d,1) models assume the following structure:

$$\begin{aligned} x_n(t_{\tau+1}) &= \mu + \epsilon_n(t_{\tau+1}) \\ \epsilon_n(t_{\tau+1}) &= z_n(t_{\tau+1})\sigma_n(t_{\tau+1}) \\ \sigma_n^2(t_{\tau+1}) &= w + \alpha \epsilon_n^2(t_{\tau+1}) + \beta \sigma_n^2(t_{\tau}) \end{aligned}$$

Motivation	Outlier Detection	Simulation	Results	Conclusions

Simulation

Simulation: Customer Arrivals

- 2 Customer Types:
 - Business and tourist customers, as per Weatherford et al (1993).
 - Business customers arrive later in the booking horizon than tourists.
 - Business customers typically have higher willingness-to-pay, and are less price sensitive.
- 7 Fare Classes:
 - Semi-differentiated fare class structure.

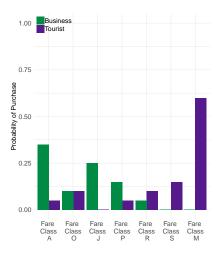


Figure: Probability of Purchase for Each Fare Class

Simulation: Customer Arrivals

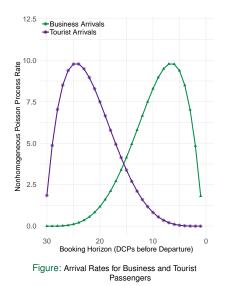
Customer Arrivals

Each customer type arrives according to a Poisson-Gamma process with rate $\lambda_i(t)$:

$$\lambda_i(t) = A\phi_i \frac{t^{a_i-1}(1-t)^{b_i-1}}{B(a_i, b_i)}$$

and chooses to purchase a seat in fare class j with probability p_{ij} . where:

$$= \frac{a_1 - 1}{a_1 + b_1 - 2} > \frac{a_2 - 1}{a_2 + b_2 - 2}$$



Motivation	Outlier Detection	Simulation	Results	Conclusions
Simulatio	on: Booking Controls			
N	faximise revenue by limiting t	he number of low valu	e tickets sold.	

Forecast demand and allocate capacity to each fare class.

EMSRb

Expected Marginal Seat Revenue-b booking limit for fare class *j* is given by:

$$PL_j = F_j^{-1} \left(1 - \frac{r_{j+1}}{\tilde{r}_j} \right),$$

- F_j, (Gaussian) distribution of independent demand for fare class j,
- r_i, fare in fare class j,
- *r̃_j*, weighted-average revenue from classes 1,...,*j*.

EMSRb - Marginal Revenue

- Does not assume the distribution of demand is independent across fare classes, and attempts to protect against buy down.
- Fiig et al. (2010) transform the demand and fares into an equivalent independent demand model through a marginal revenue transformation.
- Apply EMSRb to the transformed demand and fares.

- Maximise revenue by limiting the number of low value tickets sold.
- Forecast demand and allocate capacity to each fare class.

EMSRb

Expected Marginal Seat Revenue-b booking limit for fare class *j* is given by:

$$PL_j = F_j^{-1} \left(1 - \frac{r_{j+1}}{\tilde{r}_j}\right),$$

- F_j, (Gaussian) distribution of independent demand for fare class j,
- **r**_j, fare in fare class j,
- *ĩ_j*, weighted-average revenue from classes 1,...,*j*.

EMSRb - Marginal Revenue

- Does not assume the distribution of demand is independent across fare classes, and attempts to protect against buy down.
- Fiig et al. (2010) transform the demand and fares into an equivalent independent demand model through a marginal revenue transformation.
- Apply EMSRb to the transformed demand and fares.

- Maximise revenue by limiting the number of low value tickets sold.
- Forecast demand and allocate capacity to each fare class.

EMSRb

Expected Marginal Seat Revenue-b booking limit for fare class *j* is given by:

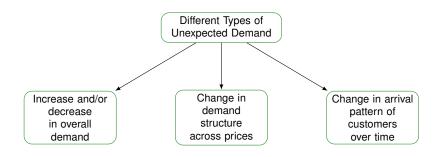
$$PL_j = F_j^{-1} \left(1 - \frac{r_{j+1}}{\tilde{r}_j}\right),$$

- F_j, (Gaussian) distribution of independent demand for fare class j,
- **r**_j, fare in fare class j,
- *ĩ_j*, weighted-average revenue from classes 1,...,*j*.

EMSRb - Marginal Revenue

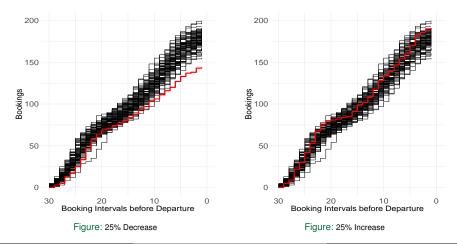
- Does not assume the distribution of demand is independent across fare classes, and attempts to protect against buy down.
- Fiig et al. (2010) transform the demand and fares into an equivalent independent demand model through a marginal revenue transformation.
- Apply EMSRb to the transformed demand and fares.

Simulation: Generating Extraordinary Demand Events



Simulation: Generating Extraordinary Demand Events

- Focus on outliers generated by an increase or decrease in overall demand.
- Consider four types of outliers: \pm 12.5%, \pm 25% change in demand from forecast.



Motivation	Outlier Detection	Simulation	Results	Conclusions

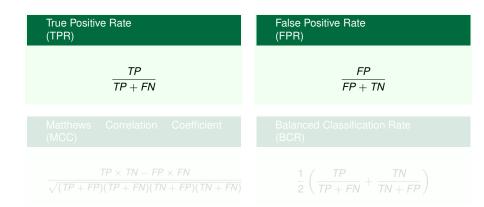
Results

Motivation	Outlier Detection	Simulation	Results	Conclusions
_	_	_		
Results: Per	formance Met	rics		
True Posit	ive Rate			
(TPR)				
	TP		FP	
	TP + FN		FP + TN	
	$TP \times TN - FP \times I$	FN	1 (TP TI	

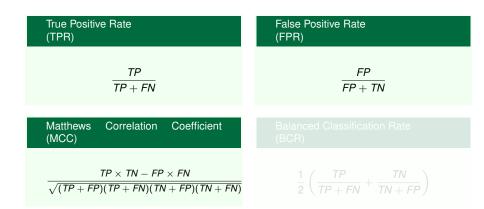
 $\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}$

 $\frac{1}{2}\left(\frac{TP}{TP+FN}+\frac{TN}{TN+FP}\right)$

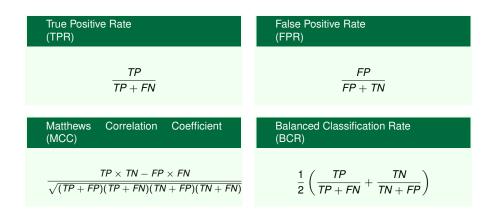
Results: Performance Metrics



Results: Performance Metrics

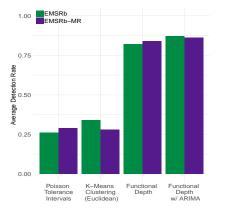


Results: Performance Metrics



Results: EMSRb vs EMSRb-MR

There is no significant difference between how a method performs under EMSRb vs EMSRb-MR controls.



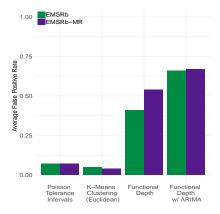


Figure: TPR

Figure: FPR

Results: EMSRb vs EMSRb-MR

There is no significant difference between how a method performs under EMSRb vs EMSRb-MR controls.

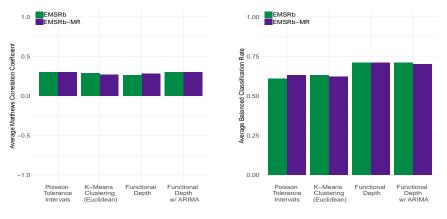


Figure: MCC

Figure: BCR

Motivation	Outlier Detection	Simulation	Results	Conclusions
Result	s: Univariate vs Mul	ltivariate vs. Fund	ctional Approache	S
	 Univariate methods' perforperformance levels off, wh Functional approaches ge MCC as it penalises high 	hereas functional gener enerally outperform oth	ally increase over time. er approaches (except ir	n terms of
1.00	Functional Depth K-Means Clustering (Euclidean) Poisson Tolerance Intervals		 Functional Depth K-Means Clustering (Euclidean Poisson Tolerance Intervals)
0.75 Ju Kate	. 1 N	0.75		
Average Detection Rate 0.20		eta 20.50 esta 20.50 esta 20.50 esta 20.25	M	M

0.00

30

20 10 Booking Intervals before Departure

Figure: TPR

0

0.00

30

0

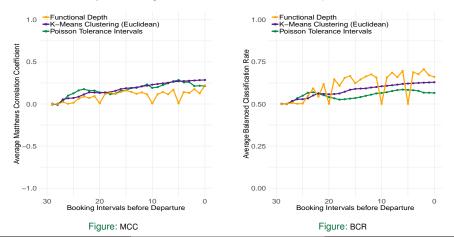
20 10 Booking Intervals before Departure

Figure: FPR

 Motivation
 Outlier Detection
 Simulation
 Results
 Conclusions

 Results: Univariate vs Multivariate vs. Functional Approaches
 Image: Conclusion state
 Image: Conclusion

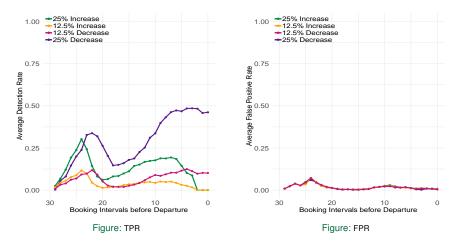
- Univariate methods' performance drops off, and multivariate methods' performance levels off, whereas functional generally increase over time.
- Functional approaches generally outperform other approaches (except in terms of MCC as it penalises high FPR with unbalanced class sizes).



Nicola Rennie

Results: Different Types of Outliers

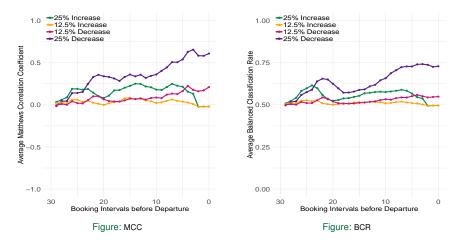
All methods are better at detecting larger magnitude changes in demand.
 All methods are better at detecting decreases in demand, as opposed to increases.



Motivation Outlier Detection Simulation Results Conclusions

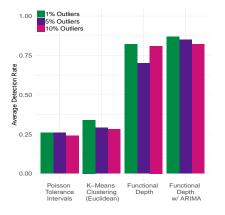
Results: Different Types of Outliers

- All methods are better at detecting larger magnitude changes in demand.
- All methods are better at detecting decreases in demand, as opposed to increases.



Results: Percentage of Outliers

There is no significant difference between how a method performs under different percentages of outliers.



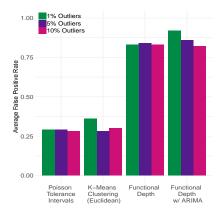


Figure: TPR

Figure: FPR

Results: Percentage of Outliers

There is no significant difference between how a method performs under different percentages of outliers.

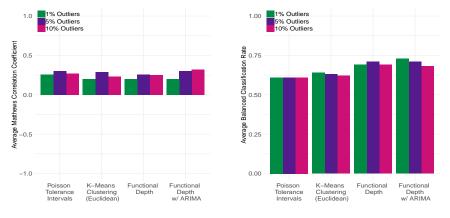
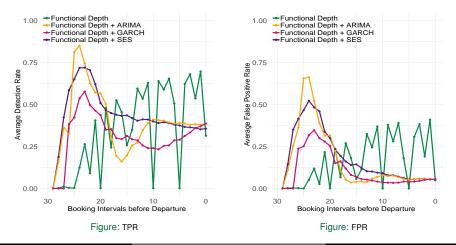


Figure: MCC

Figure: BCR

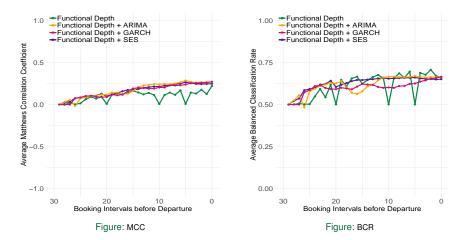
Results: Improvement from Extrapolation

 Extrapolation improves outlier detection performance, specifically early in the booking horizon.



Results: Improvement from Extrapolation

 Extrapolation improves outlier detection performance, specifically early in the booking horizon.



Motivation	Outlier Detection	Simulation	Results	Conclusions

Conclusions

Conclusions

- Outlier detection is a viable method for automating the identification of critical flights which require analyst adjustment.
- Our simulation framework demonstrates that functional approaches are more promising than univariate or multivariate approaches to outlier detection.
- Our proposed extrapolation step improves outlier detection performance, particularly early in the booking horizon when it is most valuable.

What are the Implications for Revenue Management Analysts?

- Implementing outlier detection becomes an automated part of the RM system.
- An alert is sent to the relevant analyst if a flight is deemed an outlier.
- The analyst updates the forecast (and therefore booking controls).

- Take into account time-dependence between curves, and include seasonality in demand.
- Further develop the method by making recommendations to analysts about which action should be taken, after a critical flight is identified.
- Extend to a multivariate setting to jointly monitor booking curves and revenue curves.
- Investigate the impact of unexpected demand in the dynamic pricing setting.

Motivation	Outlier Detection	Simulation	Results	Conclusions
References				

- L. R. Weatherford, S. E. Bodily, and P. E. Pfeifer. Modeling the Customer Arrival Process and Comparing Decision Rules in Perishable Asset Revenue Management Situations. Transportation Science, 27(3):239–251, 1993.
- L. R. Weatherford and P. P. Belobaba. Revenue impacts of fare input and demand forecast accuracy in airline yield management. The Journal of the Operational Research Society, 53(8):811–821, 2002.
- K. T. Talluri and G. J. Van Ryzin. *The Theory and Practice of Revenue Management*. Kluwer Academic Publishers, 2004.
- S. Mukhopadhyay, S. Samaddar, and C. Colville. Improving Revenue Management Decision Making for Airlines by Evaluating Analyst-Adjusted Passenger Demand Forecasts. Decision Sciences, 38(2):309–327, 2007.
- C. Cleophas, D. Kadatz, and S. Vock. Resilient Revenue Management: A Literature Survey of Recent Theoretical Advances. Journal of Revenue and Pricing Management, 16(5): 483–498, 2017.

Motivation	Outlier Detection	Simulation	Results	Conclusions

Questions?

n.rennie@lancaster.ac.uk