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Motivation: Extraordinary Demand Events in Revenue Management

Forecasting is a key component of most RM systems.
e.g. passenger demand, willingness-to-pay, cancellation rates.

Outliers in demand result in inaccurate forecasts, leading to non-optimal inventory
controls, and hence, lost revenue.

There are two dangers of not detecting outliers:
The inability to predict the future in the short-term.
Contamination of the data from which forecasts derive in the mid-term.

Online detection rates are important. If an outlier detection approach only works in
hindsight, or close to departure, we can gain little from it.
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Motivation: Extraordinary Demand Events in Revenue Management

Over-forecasting Under-forecasting

% Change in Demand from Forecast

Forecast Demand Factor -25% -12.5% +12.5% +25%

0.90 -2.6% -2.0% +3.5% +2.2%

1.20 +2.7% +5.4% -2.3% -2.2%

1.50 +10.4% +2.8% -7.1% -7.2%

Avg. +3.5% +2.1% -2.0% -2.4%

Table: % Change in Revenue Resulting from Correcting Inaccurate Demand Forecasts Under EMSRb

Impacts of unexpected demand are not symmetric.

Under EMSRb heuristic booking limits, pessimistic forecasting can be beneficial
which is in line with previous findings by Weatherford and Belobaba (2002).
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Motivation: Existing Literature

Weatherford and Belobaba (2002)
In terms of loss of potential revenue, ‘the greatest impacts were observed when the fare
class demand forecasts proved to be inaccurate.’

Weatherford and Pölt (2002)
Most existing research focuses on accurately forecasting demand, and the ‘better
unconstraining of airline demand data in revenue management systems for ... greater
revenues’.

Mukhopadhyay et al (2007)
‘If analysts can reliably improve system-generated forecasts on critical flights at critical
times, airlines can generate significantly more revenue.’

Cleophas et al (2017)
‘Systematically measuring the effect of such interventions and on improving their
support is still rare’.

Aim to improve analyst interventions by identifying critical flights, through
incorporating outlier detection methodology from statistics literature into revenue
management techniques.
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Motivation: What Do We Want to Do?

Examine the use of existing outlier detection methods for the identification of
unusual demand, and highlight specific features of their use in the revenue
management setting.

Propose an adaptation to an existing functional outlier detection method which
significantly improves performance.

To our knowledge this is the first suggestion of an automated methodology for outlier
detection in a revenue management system.
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Outlier Detection
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Outlier Detection

Outlier
Outlier: ‘an observation which deviates so much from the other observations as to
arouse suspicions that it was generated by a different mechanism.’ - Hawkins, 1980
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Outlier Detection: Univariate Approaches

Applied at each time point in independently.
Ignores dependence between and within booking curves.
Methods: Nonparametric percentiles, tolerance intervals, and robust Z-score.
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Outlier Detection: Multivariate Approaches

Applied to a vector of bookings up to time tτ .
Ignores dependence between booking curves, and time-dependence within
booking curves.
Methods: Distance-based (k -nearest neighbours), and clustering-based
(k -means).

●
●

●
●

●
● ● ●

●
●

●
● ●

● ● ● ● ●
●

●
●

● ●
● ● ●

●
● ●

● ●
●

●
● ●

● ● ●
●

● ● ● ● ●
● ●

● ●
● ●

● ●

●
● ●

● ●

●
●

● ●

●
●

●
●

0

20

40

60

0 5 10 15 20
Time

Figure: Booking Curves

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

● ●
−5

0

5

−5 0 5
Number of Bookings at Time tτ

N
um

be
r o

f B
oo

ki
ng

s 
at

 T
im

e 
t τ−

1

Figure: τ -Dimensional Plot of Bookings at Time tτ

Nicola Rennie Revenue Management and Pricing 28 August 2019 11



Motivation Outlier Detection Simulation Results Conclusions

Outlier Detection: Functional Approaches
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Figure: Booking Curves (2-dimensional)

Functional Data Analysis

Treat each booking curve as
observations of a real function.

Febrero et al. (2008) define an outlier
as a curve generated by a stochastic
process with a different distribution
than the rest of the curves, which are
assumed to be identically distributed.

Takes into account dependence within
booking curves, specifically time
dependence.
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Outlier Detection: Functional Approaches

Functional Depth

Functional depth is a measure of the centrality, or ‘outlyingness’ of an observation
with respect to a given dataset (López-Pintado and Romo (2009)).

In the case of one-dimensional random variables, the halfspace depth of a point
yn with respect to a sample y1, . . . , yN drawn from distribution F is:

HD(yn) = min {FN(yn), 1− FN(yn)}

where FN is the empirical cumulative distribution of the sample y1, . . . , yN .

This definition has been extended into the multivariate functional data setting.

We detect outliers by calculating the multivariate functional halfspace depth of
each booking curve up to time tτ . Those curves with depths below some
threshold are classified as outliers.
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Proposed Method: Functional Outlier Detection with Extrapolation

Idea: Combine univariate time series forecasting methods to extrapolate beyond
the observed data, then apply function depth outlier detection to the combined
observed and extrapolated curve.
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Proposed Method: Functional Outlier Detection with Extrapolation

Algorithm 1: Using Extrapolation to Improve Functional Outlier Detection

1 At time tτ forecast the accumulation of bookings at each time τ + 1, . . . ,T ,
ŷn(tτ+1), . . . , ŷn(tT ), for each flight n ;

2 Calculate Dn(ŷn(tτ )), the functional depth of the observed and extrapolated booking
curve ŷn(tτ ) = (yn(t1), yn(t2), . . . , yn(tτ ), ŷn(tτ+1), . . . , ŷn(tT )), for each flight n at
time tτ . ;

3 Calculate a threshold, C, for the functional depth. ;
4 if Dn(ŷn(tτ )) ≤ C then
5 Define flight n as an outlier. Delete flight n from the sample of N flights.
6 end
7 while ∃ n s.t. Dn(ŷn(tτ )) ≤ C do
8 Recalculate functional depths on the new sample, and remove further outliers.
9 end
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Proposed Method: Functional Outlier Detection with Extrapolation

Why do we need to generate new forecasts for extrapolation?

Not all revenue management systems require forecasts of how demand accumulates,
only final demand.

Not all RM systems store historic forecasts.

Forecasts are based on multiple flights which normalises outlying behaviour.
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Proposed Method: Functional Outlier Detection with Extrapolation

Simple Exponential Smoothing (SES): SES works on the principle of averaging
whilst down-weighting older observations. Given a time series
yn(t1), yn(t2), . . . , yn(tτ ), a forecast for time tτ+1, ŷn(tτ+1) is given by:

ŷn(tτ+1) = αyn(tτ ) + (1− α)ŷn(tτ ),

for some smoothing constant, α.

Autoregressive Integrated Moving Average (ARIMA): ARIMA models
incorporate a trend component, and assume that future observations are an
additive, weighted combination of previous observations and previous errors. Let
xn(tτ ) be the d th differenced time series relating to yn(tτ ). The one-step ahead
forecast x̂n(tτ+1) is given by:

x̂n(tτ+1) = µ+ φ1xn(tτ ) + . . .+ φpxn(tτ−p+1)− θ1ε(tτ )− . . .− θqε(tτ−q+1)

for some constant mean µ, parameters φ1, . . . , φp, θ1, . . . , θq and white noise

process
(
εtj

)
.
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for some smoothing constant, α.

Autoregressive Integrated Moving Average (ARIMA): ARIMA models
incorporate a trend component, and assume that future observations are an
additive, weighted combination of previous observations and previous errors. Let
xn(tτ ) be the d th differenced time series relating to yn(tτ ). The one-step ahead
forecast x̂n(tτ+1) is given by:

x̂n(tτ+1) = µ+ φ1xn(tτ ) + . . .+ φpxn(tτ−p+1)− θ1ε(tτ )− . . .− θqε(tτ−q+1)

for some constant mean µ, parameters φ1, . . . , φp, θ1, . . . , θq and white noise

process
(
εtj

)
.

Nicola Rennie Revenue Management and Pricing 28 August 2019 17



Motivation Outlier Detection Simulation Results Conclusions

Proposed Method: Functional Outlier Detection with Extrapolation

Integrated Generalised Autoregressive Conditional Heteroskedasticity
(IGARCH): IGARCH models incorporate a trend component and assume that the
variance structure follows an autoregressive moving average model. Again, let
xn(tτ ) be the d th differenced time series relating to yn(tτ ). IGARCH(1,d,1) models
assume the following structure:

xn(tτ+1) = µ+ εn(tτ+1)

εn(tτ+1) = zn(tτ+1)σn(tτ+1)

σ2
n(tτ+1) = w + αε2n(tτ+1) + βσ2

n(tτ )
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Simulation
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Simulation: Customer Arrivals

2 Customer Types:
Business and tourist customers, as
per Weatherford et al (1993).

Business customers arrive later in the
booking horizon than tourists.

Business customers typically have
higher willingness-to-pay, and are less
price sensitive.

7 Fare Classes:
Semi-differentiated fare class
structure.
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Simulation: Customer Arrivals

Customer Arrivals
Each customer type arrives according to a
Poisson-Gamma process with rate λi (t):

λi (t) = Aφi
tai−1(1− t)bi−1

B(ai , bi )

and chooses to purchase a seat in fare
class j with probability pij . where:

i ∈ I = {1 = business, 2 = tourist}
A ∼ Gamma(α, β).

φ1 + φ2 = 1.
a1−1

a1+b1−2 >
a2−1

a2+b2−2
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Simulation: Booking Controls

Maximise revenue by limiting the number of low value tickets sold.

Forecast demand and allocate capacity to each fare class.

EMSRb

Expected Marginal Seat Revenue-b
booking limit for fare class j is given
by:

PLj = F−1
j

(
1−

rj+1

r̃j

)
,

Fj , (Gaussian) distribution of
independent demand for fare
class j ,

rj , fare in fare class j ,

r̃j , weighted-average revenue
from classes 1, . . . , j .

EMSRb - Marginal Revenue

Does not assume the
distribution of demand is
independent across fare
classes, and attempts to protect
against buy down.

Fiig et al. (2010) transform the
demand and fares into an
equivalent independent demand
model through a marginal
revenue transformation.

Apply EMSRb to the
transformed demand and fares.
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Simulation: Generating Extraordinary Demand Events

Different Types of
Unexpected Demand

Increase and/or
decrease
in overall
demand

Change in
demand
structure

across prices

Change in arrival
pattern of
customers
over time

Nicola Rennie Revenue Management and Pricing 28 August 2019 23



Motivation Outlier Detection Simulation Results Conclusions

Simulation: Generating Extraordinary Demand Events

Focus on outliers generated by an increase or decrease in overall demand.

Consider four types of outliers: ± 12.5%, ± 25% change in demand from forecast.
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Results

Nicola Rennie Revenue Management and Pricing 28 August 2019 25



Motivation Outlier Detection Simulation Results Conclusions

Results: Performance Metrics

True Positive Rate
(TPR)

TP
TP + FN

False Positive Rate
(FPR)

FP
FP + TN

Matthews Correlation Coefficient
(MCC)

TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Balanced Classification Rate
(BCR)

1
2

(
TP

TP + FN
+

TN
TN + FP

)
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Results: EMSRb vs EMSRb-MR

There is no significant difference between how a method performs under EMSRb
vs EMSRb-MR controls.

0.00

0.25

0.50

0.75

1.00

Poisson 
 Tolerance 
 Intervals 

K−Means 
 Clustering 
 (Euclidean)

Functional 
 Depth

Functional 
 Depth 

 w/ ARIMA

Av
er

ag
e 

D
et

ec
tio

n 
R

at
e

EMSRb
EMSRb−MR

Figure: TPR

0.00

0.25

0.50

0.75

1.00

Poisson 
 Tolerance 
 Intervals 

K−Means 
 Clustering 
 (Euclidean)

Functional 
 Depth

Functional 
 Depth 

 w/ ARIMA

Av
er

ag
e 

Fa
ls

e 
Po

si
tiv

e 
R

at
e

EMSRb
EMSRb−MR

Figure: FPR

Nicola Rennie Revenue Management and Pricing 28 August 2019 27



Motivation Outlier Detection Simulation Results Conclusions

Results: EMSRb vs EMSRb-MR

There is no significant difference between how a method performs under EMSRb
vs EMSRb-MR controls.

−1.0

−0.5

0.0

0.5

1.0

Poisson 
 Tolerance 
 Intervals 

K−Means 
 Clustering 
 (Euclidean)

Functional 
 Depth

Functional 
 Depth 

 w/ ARIMA

Av
er

ag
e 

M
at

th
ew

s 
C

or
re

la
tio

n 
C

oe
ffi

ci
en

t

EMSRb
EMSRb−MR

Figure: MCC

0.00

0.25

0.50

0.75

1.00

Poisson 
 Tolerance 
 Intervals 

K−Means 
 Clustering 
 (Euclidean)

Functional 
 Depth

Functional 
 Depth 

 w/ ARIMA

Av
er

ag
e 

Ba
la

nc
ed

 C
la

ss
ifi

ca
tio

n 
R

at
e

EMSRb
EMSRb−MR

Figure: BCR

Nicola Rennie Revenue Management and Pricing 28 August 2019 28



Motivation Outlier Detection Simulation Results Conclusions

Results: Univariate vs Multivariate vs. Functional Approaches

Univariate methods’ performance drops off, and multivariate methods’
performance levels off, whereas functional generally increase over time.
Functional approaches generally outperform other approaches (except in terms of
MCC as it penalises high FPR with unbalanced class sizes).
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Results: Univariate vs Multivariate vs. Functional Approaches

Univariate methods’ performance drops off, and multivariate methods’
performance levels off, whereas functional generally increase over time.
Functional approaches generally outperform other approaches (except in terms of
MCC as it penalises high FPR with unbalanced class sizes).
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Results: Different Types of Outliers

All methods are better at detecting larger magnitude changes in demand.
All methods are better at detecting decreases in demand, as opposed to
increases.
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Results: Different Types of Outliers

All methods are better at detecting larger magnitude changes in demand.
All methods are better at detecting decreases in demand, as opposed to
increases.
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Results: Percentage of Outliers

There is no significant difference between how a method performs under different
percentages of outliers.
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Results: Percentage of Outliers

There is no significant difference between how a method performs under different
percentages of outliers.
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Results: Improvement from Extrapolation

Extrapolation improves outlier detection performance, specifically early in the
booking horizon.
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Results: Improvement from Extrapolation

Extrapolation improves outlier detection performance, specifically early in the
booking horizon.
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Conclusions
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Conclusions

Outlier detection is a viable method for automating the identification of critical
flights which require analyst adjustment.

Our simulation framework demonstrates that functional approaches are more
promising than univariate or multivariate approaches to outlier detection.

Our proposed extrapolation step improves outlier detection performance,
particularly early in the booking horizon when it is most valuable.
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What are the Implications for Revenue Management Analysts?

Implementing outlier detection
becomes an automated part of the RM
system.

An alert is sent to the relevant analyst
if a flight is deemed an outlier.

The analyst updates the forecast (and
therefore booking controls).

Nicola Rennie Revenue Management and Pricing 28 August 2019 39



Motivation Outlier Detection Simulation Results Conclusions

Further Work

Take into account time-dependence between curves, and include seasonality in
demand.

Further develop the method by making recommendations to analysts about which
action should be taken, after a critical flight is identified.

Extend to a multivariate setting to jointly monitor booking curves and revenue
curves.

Investigate the impact of unexpected demand in the dynamic pricing setting.
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Questions?

n.rennie@lancaster.ac.uk
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